

gli under 40 a confronto

Verona, Centro Congressi Camera di Commercio 26-27 settembre 2025

WM: approccio chemioterapico versus terapia chemo-free

Emilia Cappello

Division of Hematology, Fondazione IRCCS Policlinico San Matteo, Pavia

Disclosures of Emilia Cappello

Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
			Non	1e			

Clinical case (1) - TN

October '24: (M.L.) 60-year old female presented to ER due to blurry vision, nosebleed and asthenia

Investigations

- Lab tests. Hb 3.9 g/dl, GB 3000/mmc (ANC 1000/mmc, ALC 600/mmc), PLT 29000/mmc, SPE with IgM kappa (4 g/dl), slgM 7000 mg/dl, beta2microglobulin 4 mg/L;
- **FO**: retinal hemorrhages;
- CT TB scan: axillary and inguinal adenopathy (max 1.5 cm). No splenomegaly. No extramedullary and/or bulky disease;
- Bone marrow biopsy: 50% lymphoplasmacytic cell involvement, 5% PCs, mastocytes;
- **Molecular characteristics:** *MYD88*^{L265P}, *CXCR4*^{S388X}, *TP53*^{WT}. FISH: del17p: absent;
- Comorbidities: hypertension.

→ Waldenström Macroglobulinemia/LPL with monoclonal serum IgM kappa, treatment naïve, symptomatic for hyperviscosity, cytopenias, IgM levels > 60 g/L. $MYD88^{L265P}$, $CXCR4^{S388X}$, $TP53^{WT}$. FISH del17p: absent. IPSSWM: high

Clinical indications for initiation of therapy

Recurrent fever, night sweats, weight loss, fatigue

Lymphadenopathy: either symptomatic or bulky (≥ 5 cm in

Symptomatic hepatomegaly and/or splenomegaly Symptomatic organomegaly and/or organ or tissue infiltration Peripheral neuropathy due to WM

Laboratory indications for initiation of therapy

IgM levels > 60 g/L

Symptomatic cold agglutinin anaemia Autoimmune haemolytic anaemia and/or thrombocytopaenia Nephropathy-related to WM Amyloidosis-related to WM $Hb \leq 10 \text{ g/dL}$ Platelets $< 100 \times 10^9 / L$

2 PEX with bleeding resolution...What's next?

- DRC (Dexamethasone-Rituximab-Cyclophosphamide) Α.
- B. Zanubrutinib
- Rituximab-Bendamustine
- D. Ibrutinib

Join at slido.com #3546 320

NCCN Guidelines for Waldenström Macroglobulinemia (TN)

NCCN Guidelines Version 1. 2026 Waldenström Macroglobulinemia/ Lymphoplasmacytic Lymphoma

Version 1.2026 – 24 June 2025

PRIMARY THERAPY FOR WM/LPL^{a,b}

(The regimens under each preference category are listed by order of NCCN Category of Evidence and Consensus alphabetically.)

Preferred

- Zanubrutinib^{c,d} (category 1)
- Bendamustine/Rituximab

Other Recommended

- Ibrutinib^{c,d} (category 1)
- Ibrutinib^{c,d} + Rituximab (category 1)
- Bendamustine
- Bortezomib/Dexamethasone/Rituximab
- Carfilzomib/Rituximab/Dexamethasone
- Ixazomib/Rituximab/Dexamethasone

- Rituximab
- Rituximab/Cyclophosphamide/Dexamethasone
- Rituximab/Cyclophosphamide/Dexamethasone + Bortezomib
- Rituximab/Cyclophosphamide/Prednisone

^a General Considerations for Systemic Therapy for WM/LPL (WM/LPL-B 1 of 4).

b Obinutuzumab may be considered in patients who are unable to tolerate Rituximab (Wróbel T, et al. Hemasphere 2023;7:e4339598. doi: 10.1097/01. HS9.0000971308.43395.98).

c Rapid increases in IgM levels (IgM rebound) have been observed following discontinuation of BTK inhibitors. Consider continuing therapy with the BTK inhibitor until starting the next line of therapy or monitor for IgM rebound after discontinuation of BTK inhibitors.

d Should not be used in first-line for patients with LPL-associated amyloidosis.

Treatment choice in active WM requiring therapy

Patient characteristics

- Biological age
- Comorbidities
- Fitness
- Potential toxicity therapy-related

Prognostic factors

- IPSSWM score
- rIPSSWM score

Local guidelines

- Accessibility
- Reimbursment arrangements

Treatment choice in active WM

Disease factors

- Hyperviscosity syndrome
- Bulky and/or EMD disease
- WM-related AL amyloidosis
- Bing-Neel syndrome
- Symptomatic cryoglobulinemia
- Cold agglutinine disease
- IgM-related neurophaty
- Nephropathy related to WM

Molecular/biological features

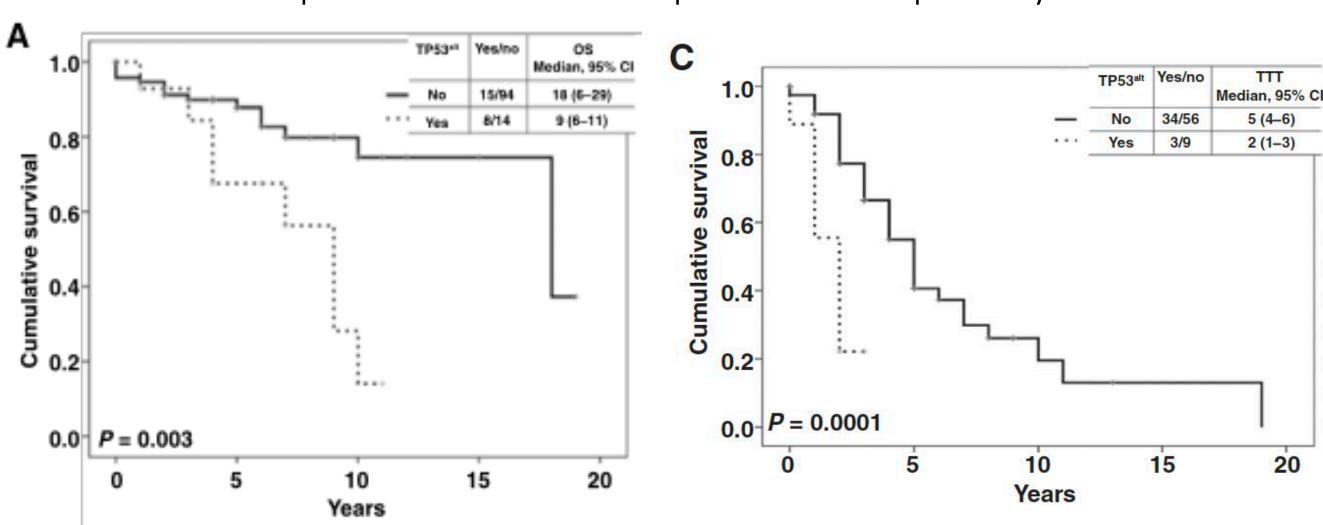
- MYD88 mutational status
- CXCR4 mutational status
- *TP53* disruptions

Molecular hallmarks in WM

MYD88^{L265P} in WM pts (95-97%)¹

MYD88^{WT} pts have a higher risk for disease transformation, and/or show shorter OS

1. Treon S et al, JCO 2020 2. Treon SP et al, Br J Haematol 2018

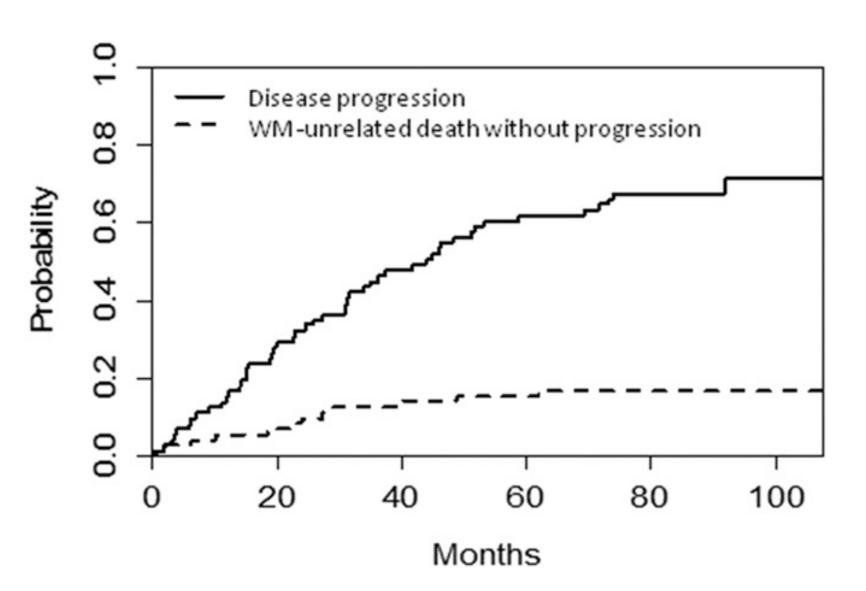

CXCR4^{MUT} in WM pts (30-40%)³

- **CXCR4**^{Mut/NS}: higher BM disease burden⁴; higher slgM levels⁴; higher incidence of symptomatic hyperviscosity⁴; less adenophaty⁴; shorter TTFT⁵;
- CXCR4^{Mut/NS} adversely affect treatment outcomes with BTKis⁶

3. Castillo J et al, Exp Rev Hematol 2019 4. Treon SP et al, Blood 2014; 123: 2791-96 5. Varettoni et al, Haematologica 2017. 6 Dimopoulos et al JCO 2023

TP53 disruptions (TP53^{MUT} and del17p) in WM pts

5-10% of TN WM pts and 25%-30% of RR WM pts who had been previously treated⁷


TP53^{MUT} patients had higher number of genomic abnormalities than TP53^{WT} patients (6.8 vs. 2.6, P < 0.002), with shorter time to first treatment and shorter PFS and OS⁸

7. Treon et al Blood 2025 8. Poulain S et al, Clin Cancer Res 2017 9. Garcia-Sanz R et al. Semin Hematol. 2023

Chemo-immunotherapy options – DRC, R-Bendamustine

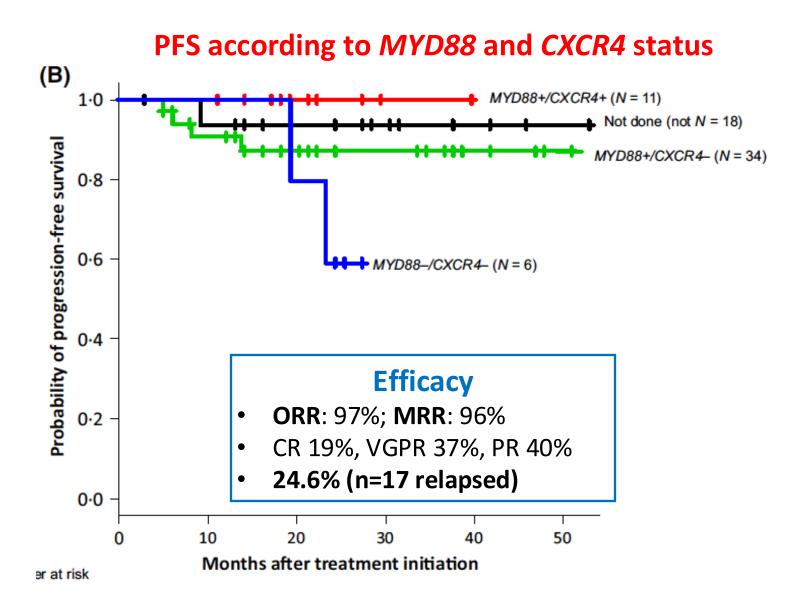
DRC as primary treatment of WM¹⁻²

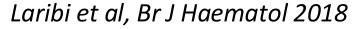
Study population: n=72 TN WM pts; M: 67%; median age at dx: 69 yo (range 45-88). Median FUP 8 yrs

Outcome

median-PFS: 35 mo (95%CI: 22-48) median-OS: 95 mo (95%CI: 87-103)

Efficacy

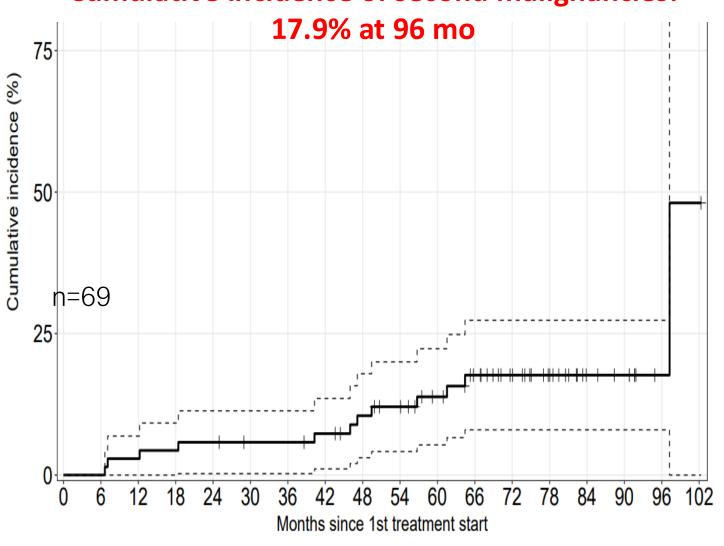

ORR: 83% (CR 7%, PR 67%, MR 9%)
Median TTNT: 51 mo


Long term toxicities

- 35 patients (49%) have died: 20 (57%) were WM-related, and in 15 (43%) death was unrelated to WM (related to solid tumors in 8)
- 1 pts developed MDS (and 2 pts developed DLBCL

BR in newly-diagnosed WM patients. A study on behalf of FILO⁴⁻⁵

Study population: n=69 TN WM pts; M: 67%; median age at dx: 69 yo (range 45-88)



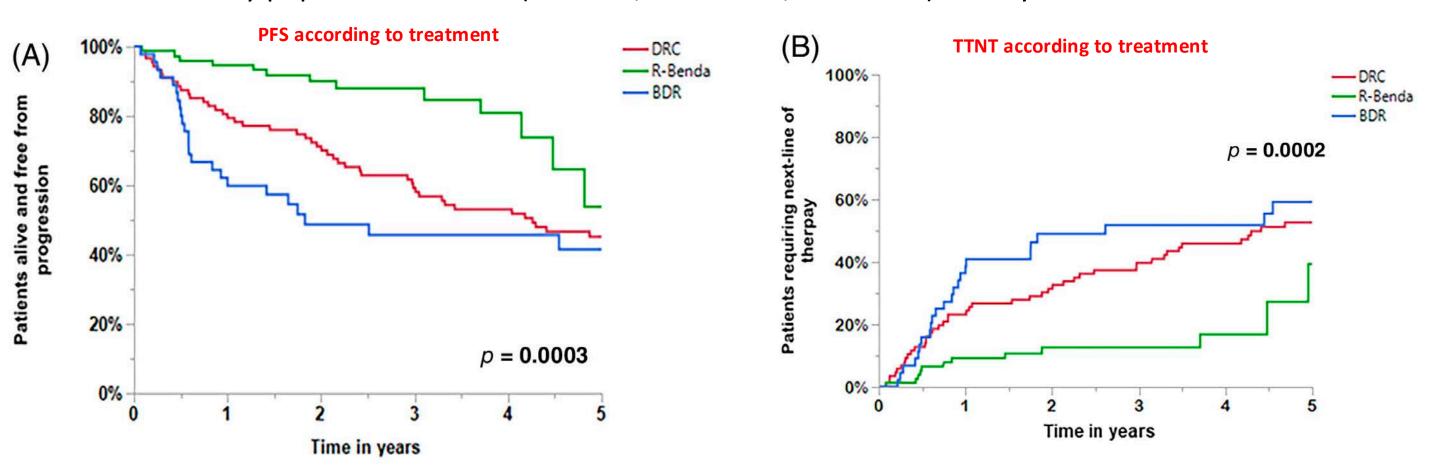
Outcomes (mFUP 97 mo)³

- mOS: NR
- **mPFS:** 82.2 mo (95%CI: 69.7-93.1)
- mOS MYD88^{WT} pts: 27.37 mo vs NR (MYD88^{L265P})
- mOS NR whatever the CXCR4 status

Cumulative incidence of second malignancies:

Long term toxicities³

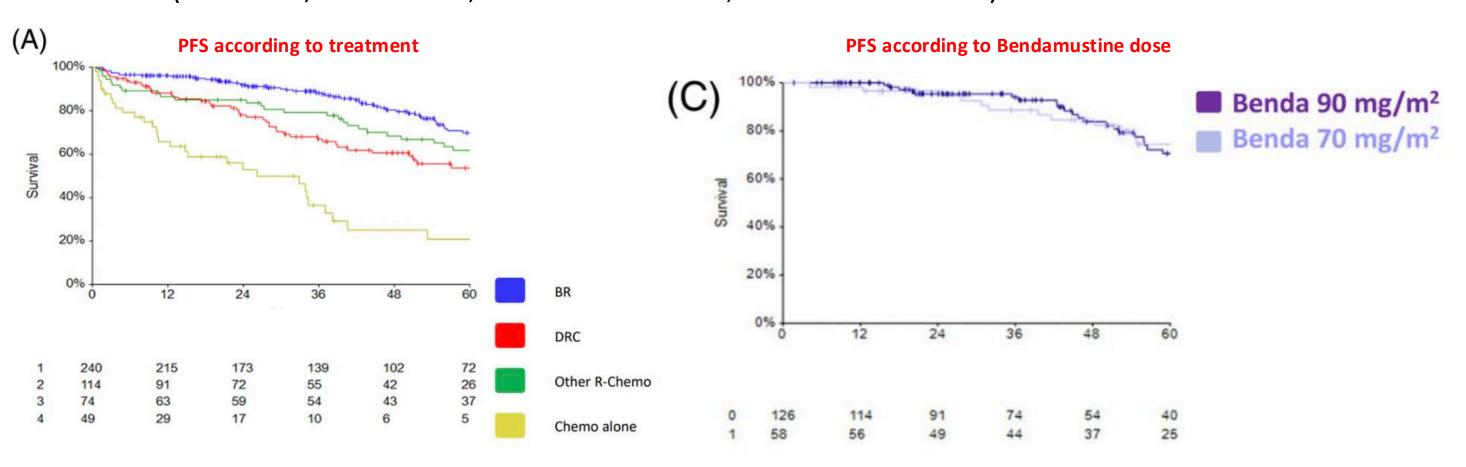
- Second malignancies: 12 pts (9 solid tumors, 2 myelodysplastic syndromes, 1 AML);
- **Long lasting cytopenias: 51% of pts** (G1-2), median duration of 9 mo


1. Dimopoulos et al, JCO 2007 2. Kastritis E. et al, Blood 2015

3. Leblond et al, IWWM-12, 2024 4. Laribi et al, Br J Haematol 2018 5. Laribi et al, Br J Haematol 2024

Comparison of Rituximab-based, fixed duration, therapies for TN WM pts

Comparative analysis of BR vs DRC vs BDR in 220 TN WM pts

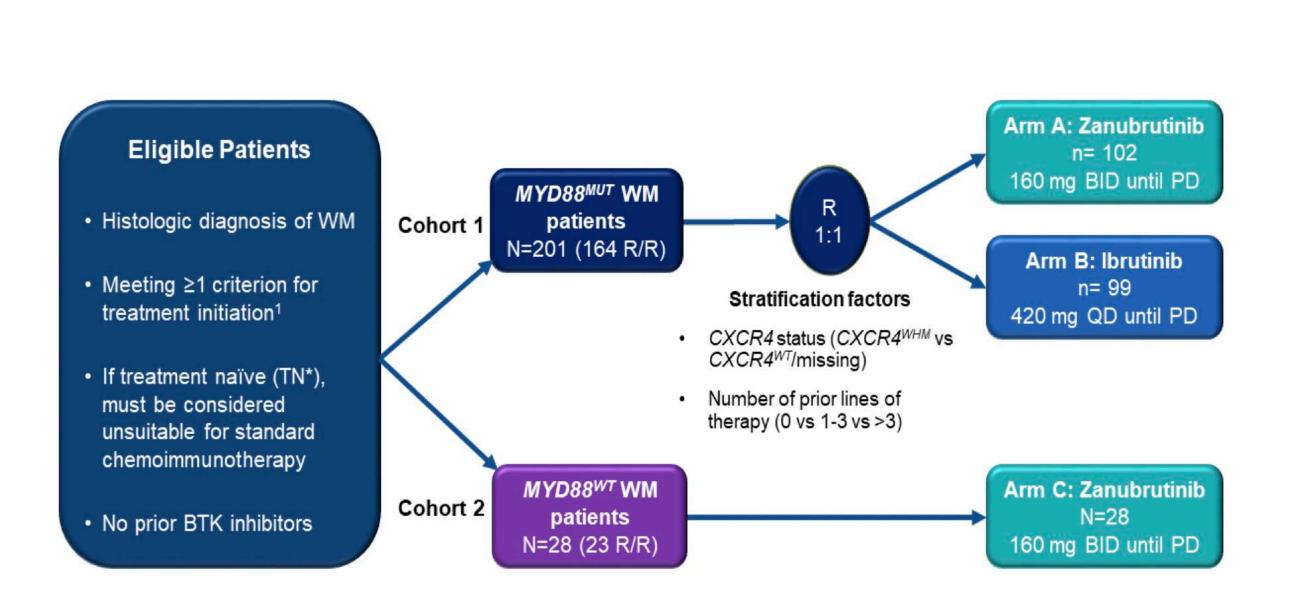

Study population: n= 220 (BR n=83, DRC n= 92, BDR n=45) at Mayo Clinic Nov 2000-Oct 2019

Abeykoon et al, Am J Hematol 2021

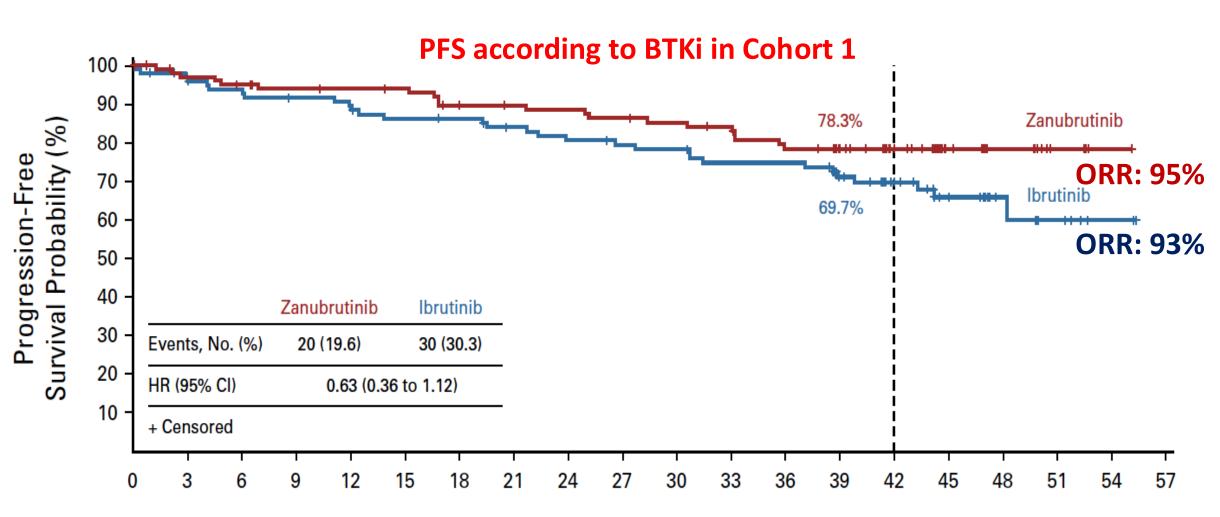
First line treatment of WM in Italy: multicenter real life study on 547 pts

Study population: n= 547 (BR n=245, DRC n= 116, other Chemo n=86, Chemo-alone n=52) – 14 FIL Centres Jan 2008-Dec 2022

Autore et al, Am J Hematol 2025


Chemo-free options, cBTK-i in WM

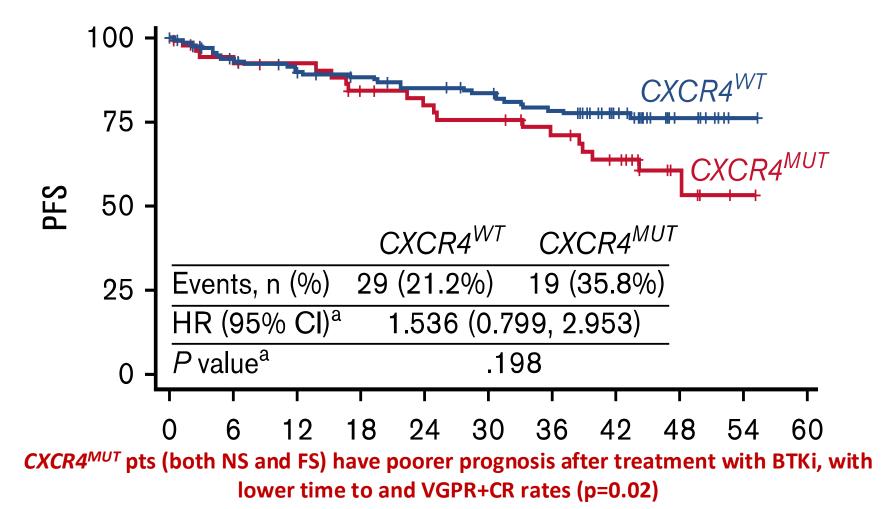
Study	Regimen	N	Cohort	ORR/MRR (%)	Results	Reference
Pivotal study	Ibrutinib	66	RR	91/79 m to major response: 1.8 mo	5-year PFS: 54% 5-year OS: 87%	Treon et al. JCO 2021
iNNOVATE (Arm C)	Ibrutinib	31	RR	87/74 m to major response: 2 mo	5-year PFS: 40%	Dimopoulos et al, Lancet Oncol 2017
Phase 2	Ibrutinib	30	TN	100/87 m to major response: 1.9 mo	4-year PFS: 76%	Castillo et al. Leukemia 2022
INNOVATE (Arms A, B)	Rituximab + Ibrutinib/Placebo	150	TN/RR	92/76 (IR) m to major response: 3 mo	54-mo PFS: 68%	Buske et al. J Clin Onc 2022
Phase 2	Zanubrutinib	77	TN/RR	96/82 m to major response: 2.8 mo	36-mo PFS: 76%	Trotman et al. Blood 2020
ASPEN (Cohort 1)	Ibrutinib	99	TN/RR	94/80 m to major response: 2.9 mo	42-mo PFS: 85%	Dimopoulos et al, J Clin Onc 2023
ASPEN (Cohort 1)	Zanubrutinib	102	TN/RR	95/81 m to major response: 2.8 mo	42-mo PFS: 88%	Dimopoulos et al, J Clin Onc 2023
ASPEN (Cohort 2)	Zanubrutinib	28	TN/RR	78/63 m to major response: 3 mo	42-mo PFS: 84%	Dimopoulos et al, J Clin Onc 2023
Phase 2	Acalabrutinib	106	TN/RR	94/81 m to major response: NA	66-mo PFS: 84% (TN) 66-mo PFS: 52% (RR)	Owen et al. Lancet Haematol 2020
Phase 2	Tirabrutinib	27	TN/RR	96/93 m to major response: 1.2 mo TN, 2.1 mo RR mo	24-mo PFS: 93%	Sekiguchi et al. Cancer Sci 2022
Phase 2	Orelabrutinib	47	RR	90.3/81.5 m to major response: NA	m-PFS: NR	Cao et al. EClinicalMedicine 2022


Chemo-free options: c-BTKi

ASPEN study

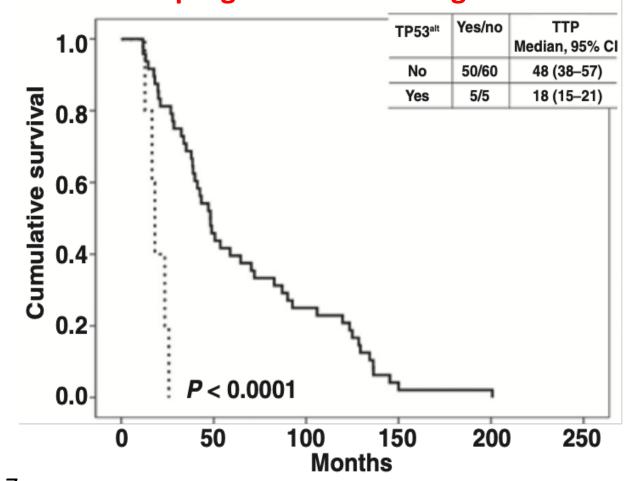
Randomized, open-label, multicenter phase III study
Primary endpoint: rate of CR or VGPR in cohort 1. Secondary endpoints: response, DoR, PFS, safety, QoL

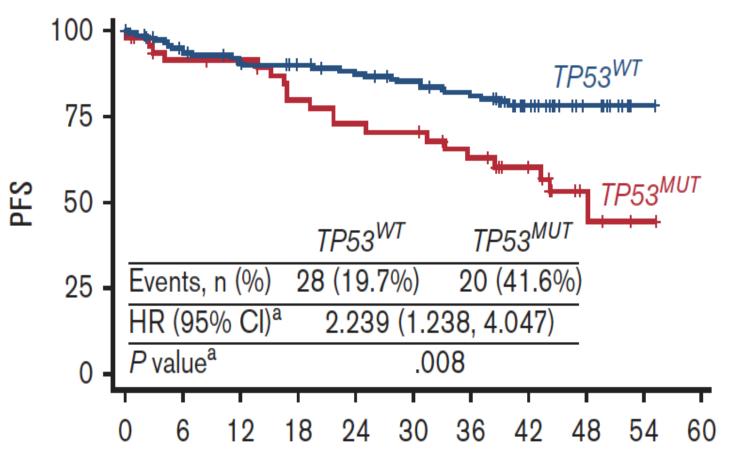
- ✓ No superiority in CR+VGPR rate with Zanu vs Ibrutinib (p=0.09)
- ✓ VGPR rates increased over time and were numerically higher with Zanu
- ✓ Median time to VGPR(+CR) rate was faster for patients on Zanu (16.6 mo vs 6.7 mo)
- ✓ No differences in PFS and OS according to BTKi
- ✓ CV safety profile (Z>I)



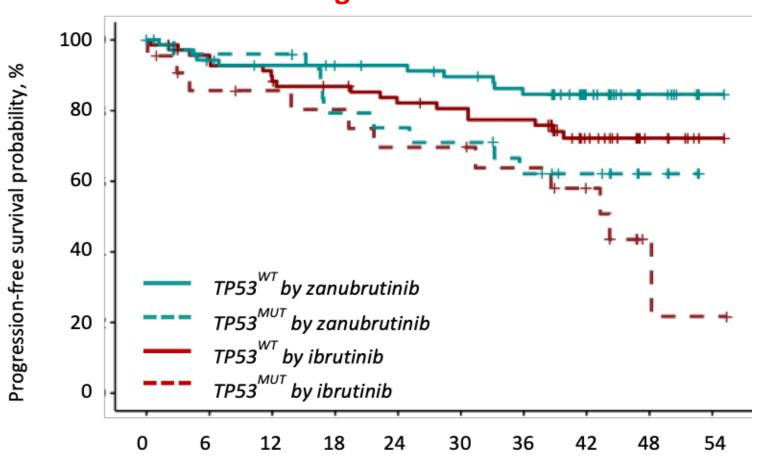
	Any	grade	Grade ≥3	
AEIs (Grouped Terms), ^a No. (%)	lbrutinib (n = 98)	Zanubrutinib (n = 101)	lbrutinib (n = 98)	Zanubrutinib (n = 101)
Infection	78 (79.6)	80 (79.2)	27 (27.6)	22 (21.8)
Bleeding	61 (62.2)	56 (55.4)	10 (10.2)	9 (8.9)
Diarrhea	34 (34.7)	23 (22.8)	2 (2.0)	3 (3.0)
Hypertension ^b	25 (25.5)	15 (14.9)	20 (20.4) ^b	10 (9.9)
Atrial fibrillation/flutter ^b	23 (23.5) ^b	8 (7.9)	8 (8.2) ^b	2 (2.0)
Anemia	22 (22.4)	18 (17.8)	6 (6.1)	12 (11.9)
Neutropenia ^b	20 (20.4)	35 (34.7) ^b	10 (10.2)	24 (23.8) ^b
Thrombocytopenia	17 (17.3)	17 (16.8)	6 (6.1)	11 (10.9)
Second primary malignancy/	17 (17.3)/	17 (16.8)/	3 (3.1)/	6 (5.9)/
Non-skin cancers	6 (6.1)	6 (5.9)	3 (3.1)	4 (4.0)

Dimopoulos et al, JCO 2023


Chemo-free options: c-BTKi


ASPEN study – Response to Zanubrutinib and Ibrutinib according to CXCR4 and TP53 mutations

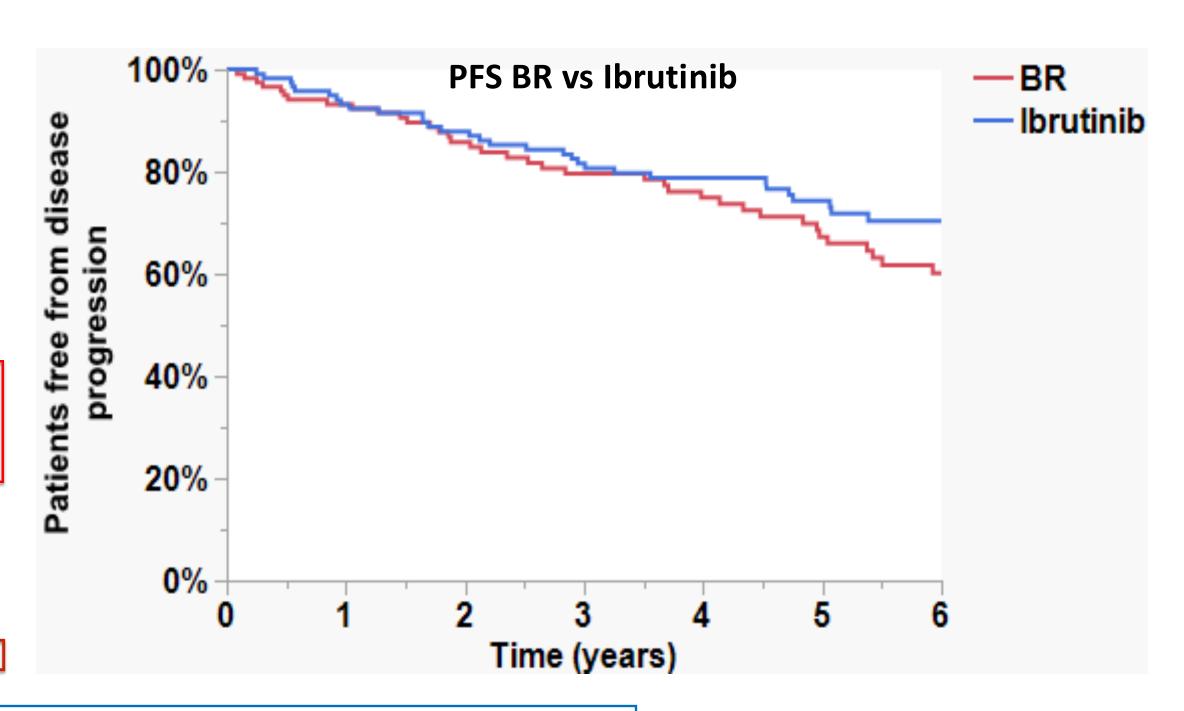
Tam C et al, Blood Adv 2024


Median time to progression according to TP53^{Alt} status

TP53^{MUT} pts have poorer prognosis after treatment with BTKi (vs TP53^{WT} pts)

Tam C et al, Blood Adv 2024

Chemo-immunotherapy options


BR vs Ibrutinib

Bendamustine-Rituximab vs ibrutinib as primary therapy for WM: an international collaborative study

Study population: 246 pts who received lbr (n=123) or BR (n=123) in US and Europe (2011-2021), TN, MYD88^{L265P} WM pts Median FUP: 4.2 yrs

	BR	Ibr	р
Follow up, median, 95%CI, y	4.5 (3.7-4.9)	4.5 (4-4.7)	0.7
Age, median, range, y	68 (40-86)	68 (39-86)	0.9
IPSS%			0.63
Low	11	17	
Intermediate	33	33	
High	56	48	
Cycles, median (range)	6 (1-6)	42 (0.3-98)	
	>4 cycles, 77%	,	
Overall response rate %	94	94	0.91
Major response rate %	92	83	0.05
Complete response %	20	2	< 0.001
≥VGPR %	50	33	0.009

	BR (n=123)	I (n=123)	p-value
5-yrs PFS (%)	67%	74%	0.12
5-yrs OS (%)	86%	85%	0.79
Median TTNT (yrs)	NR	7 yrs	NA
TD due to AE (%)	8%	19.5%	0.003

BR and ibrutinib regimens in TN WM pts, THM:

✓ Deeper responses with BR

✓ Comparable outcomes

✓ Fewer patients discontinue BR due to adverse events

Abeykoon et al, IWWM-12, 2024

Chemoimmunotherapy vs chemo-free approach

Should BTKi be preferred to CIT frontline?

	Chemoimmunotherapy	BTKi inhibitors
Patient characteristics	Age, comorbidities, fitness, hematopoietic reserve	Age, comorbidities, fitness, hematopoietic reserve
Efficacy	High efficacy in TN patients consistently demonstrated in several studies	High efficacy in R/R and TN patients (N.B: clinical trials include only a limited number of TN patients), but rare CR
Toxicity	Acceptable short-term toxicity, but long-term toxicity typical of chemo (second tumors)	Favorable safety profile, with some exceptions Better with second generation BTKi
Administration	IV administration	Oral, easy administration
Duration of therapy	Fixed duration therapy Prolonged treatment-free interval	Treatment until progression No treatment-free interval
Cost	Low, especially after introduction of biosimilars	High (but we should not consider only direct costs —> pharmacoeconomy)
Biological features (MYD88, CXCR4, TP53)	No MYD88 and CXCR4 impact TP53 ^{Alt} related chemoresistance	MYD88 ^{WT} , CXCR4 ^{MUT} , TP53 ^{Alt} impact Role of TP53 alterations needs to be further investigated

Ask patients!

Patient preferences regarding treatment options for Waldenström's macroglobulinemia: A discrete choice

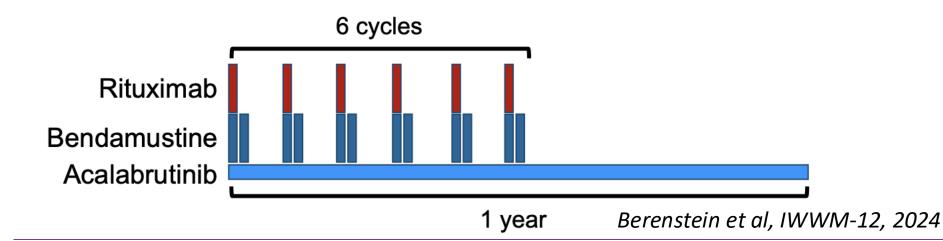
TP53^{MUT}.

experiment Karima Amaador^{1,2} | Pythia T. Nieuwkerk³ | Monique C. Minnema⁴ | Marie José Kersten^{1,2} | Josephine M. I. Vos^{1,2} |

nib, if available, over other therapies in patients with mutated *TP53*^{MUT}.

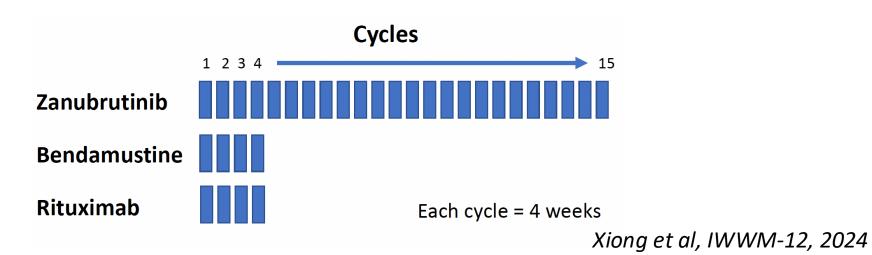
the panel prefers to use zanubruti-

Kapoor et al. Semin Hemat 2025 (CP3)


Cancer Medicine. 2023;12:3376–3386

New therapeutic approaches for WM therapy – TN pts

BRAWM study (NCT04624906)


cBTKi + CIT combinations

Multicenter, open-label, single-arm phase II trial of BR+Acalabrutinib in TN WM

ZEBRA trial [WM-NET3] (NCT06561347)

Multicenter, phase II study of combination zanubrutinib+BR (ZBR) in TN WM

RAINBOW (NCT04061512)

Randomized phase II/III study **RI vs DRC** in TN WM pts (R:1/1)

Experimental Arm
Ibrutinib
Rituximab

Comparator Arm
Cyclophosphamide
Dexamethasone
Rituximab

Primary outcomes
Response at 24 weeks
PFS at 2 years

cBTKi-R or BCL2i-R vs CIT

Secondary Outcomes
Safety and tolerability
Overall response rate
Time to next treatment

Duration of response
Overall survival (OS)
Quality of Life

viWA-1 trial (NCT05099471)

Randomized phase II trial that compared VR and DRC in TN WM pts

Experimental Arm
Venetoclax
Rituximab

Comparator Arm

Cyclophosphamide

Dexamethasone

Rituximab

Primary outcome
CR/VGPR at 12 months
after randomization

Secondary Outcomes
Safety and tolerability
Overall response rate
Duration of response
Progression-free survival
Overall survival
Quality of Life

cBTKi + **Pi** combinations

ECWM-2 trial (NCT03620903)

Multicenter, phase II trial, efficacy and toxicity of Bor-Ibr/Rix (B-IR) in TN WM pts

Buske et al. Blood 2024 (Suppl)

CZAR-1 trial (NCT04263480)

Multicenter, phase 2, open label, randomized Carfilzomib+Ibr vs Ibr in TN/RR WM pts

ZID combination (NCT04463953)

Phase II clinical trial to evaluate the efficacy and safety of zanubrutinib, ixazomib, and dexamethasone (ZID) in TN WM pts

Wenjie et al. Blood 2024 (Suppl)

Venetoclax+Ibrutinib

Phase II study of I+V WM TN pts. Median FUP: 36 months N=45 (all patients MYD88 L265P—mut, and 17 CXCR4-mut) ORR: 100%, MRR: 95%, 36 mo-PFS: 51% 93%

cBKTi/BCL2i combinations

BGB-11417-203 (NCT05952037) – Cohort 4

Multicenter, phase 2, open label combination therapy with Sonrotoclax (BGB-11417) plus zanubrutinib for up to 20 cycles

Lee et al. Blood 2024 (Suppl)

Study stopped due to a higher-than-expected occurrence of ventricular arrhythmia in 4 (9%), including 2 G5 events

Castillo et al. Blood 2024

Clinical case (2) - RR

February '25: (F.G.): 75-yrs old female WM pts in treatment with Zanubrutinib pts in visit with asthenia and systemic symptoms

- 2017: diagnosed with asymptomatic WM (MYD88^{L265P}, CXCR4^{WT}, TP53: NA)
- 2019: active disease (cytopenias, systemic symptoms); CT: mild splenomegaly (14 cm), no bulky or EMD disease. Same molecular features \rightarrow R-Bendamustine (administered 4 cycles only due to persistent G4 neutropenia): VGPR;
- 2022: first relapse (Hb 8.1 g/dl, weight loss, fatigue; slgM progressive increase). BM: LPL; molecular features: $MYD88^{L265P}$, $CXCR4^{WT}$, $TP53^{Y220C}$. No significant comorbidities \rightarrow Zanubrutinib 80 mg 2 cpr BID >> Until now

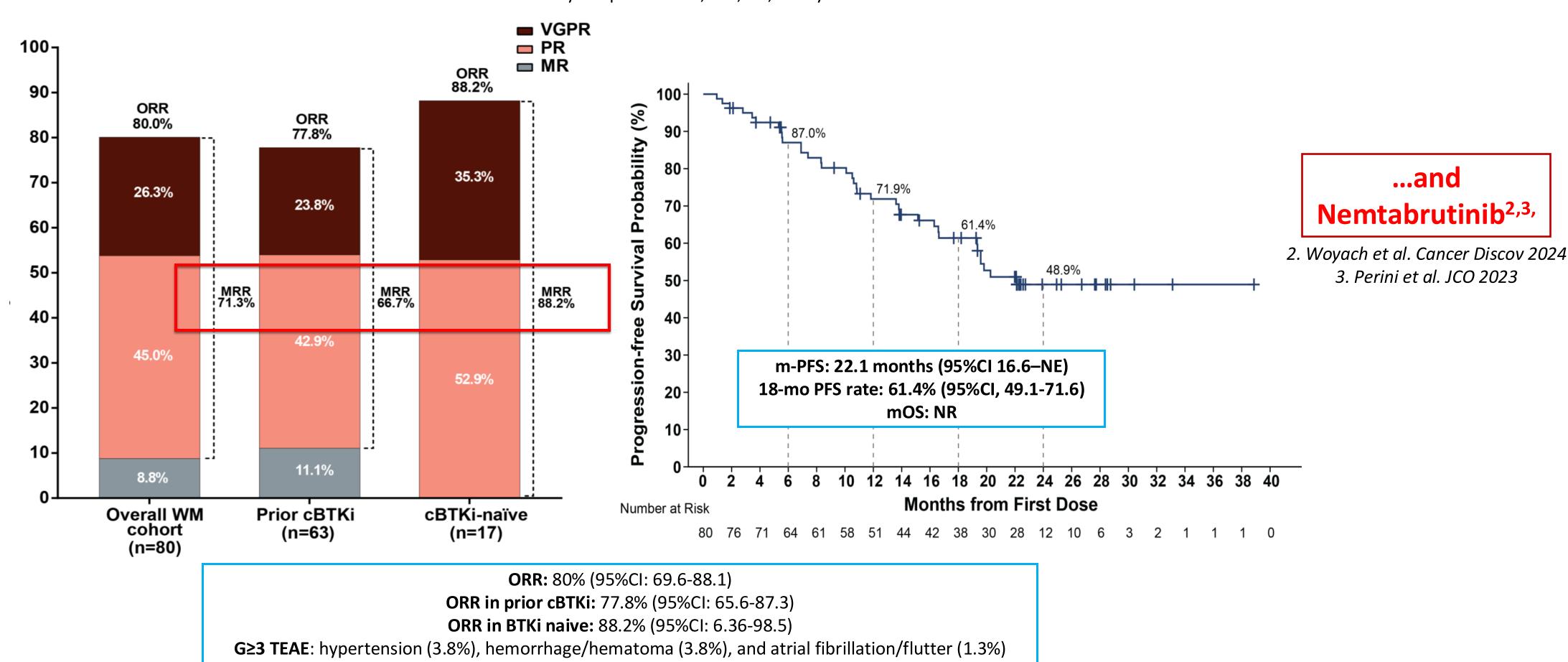
Investigations (2025)

- Lab tests. Hb 8.5 g/dl, GB 3500/mmc (ANC 1500/mmc, ALC 600/mmc), PLT 229000/mmc, SPE with IgM-k (1.2 g/dl), sIgM 1200 mg/dl;
- **CT scan:** diffuse adenopathies (max 4.5 cm para-aortic). Splenomegaly (15 cm in dpb);
- Bone marrow biopsy: LPL; molecular characteristics: MYD88^{L265P}, CXCR4^{WT}, TP53^{Y220C}. FISH del17p: absent;
- BTK^{C4815} mutation: present

Next step?

- A. Second course of CIT (BR or DRC)
- B. Venetoclax
- C. PI based scheme
- D. Pirtobrutinib

Join at slido.com #3546 320


Chemo-free options: nc-BTKi

Pirtobrutinib

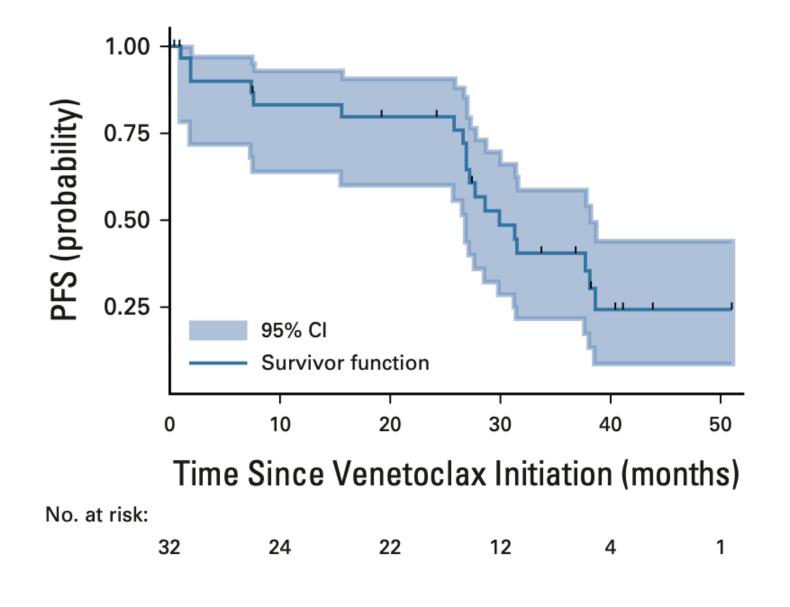
Pirtobrutinib in RR WM: Updated Results from the Phase 1/2 BRUIN Study

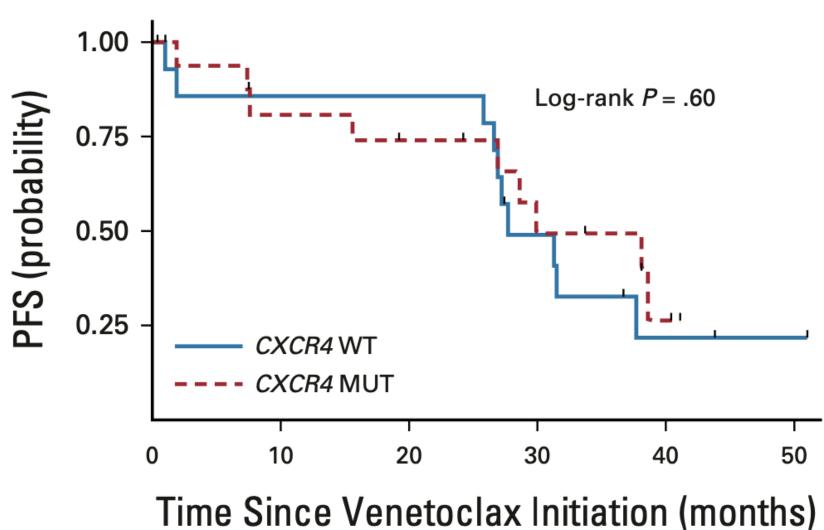
Study population: 80 WM RR pts, median age 69 yrs (range: 42–84)

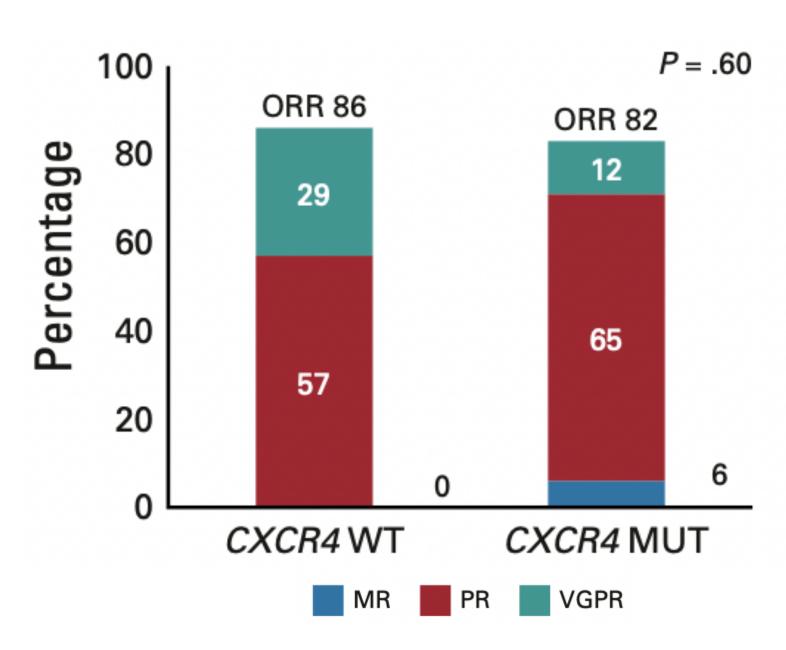
Median number of prior lines of systemic therapy received was 3 (range, 1–11). 63 (79%) patients had received prior cBTKi treatment and 17 (21%) were cBTKi-naïve Key endpoints: ORR, PFS, OS, safety

Palomba et al, IWWM-12, 2024

...and


Chemo-free options: BCL2i


Venetoclax


Venetoclax in RR WM pts

Phase II study of Ven in WM RR pts. Median FUP: 33 months N=32 (all patients MYD88(L265P) mut, and 17 $CXCR4^{MUT}$). 16 prior cBTKi

Ven: dose escalated from 200 to 800 mg daily up to 2 yrs

m-PFS: 30 mo
ORR, MR and VGPR: 84%, 81% and 19% respectively
CXCR4-mut did not affect treatment response and PFS

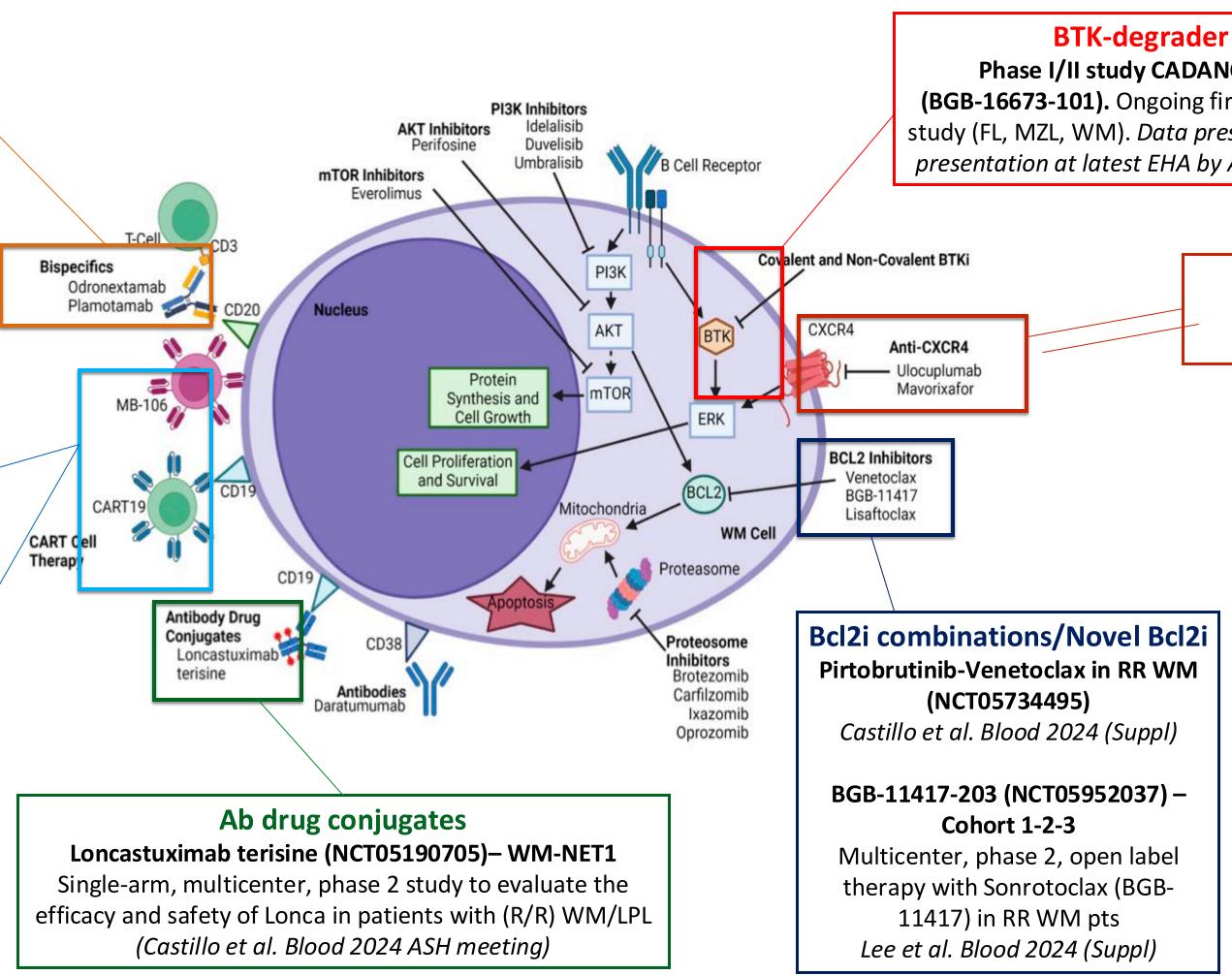
Longer time to response in pts with prior BTKi (4.5 vs 1.4 months)
AE: G3 neutropenia 45% (1 febrile), 1 clinical TLS

New therapeutic approaches for WM therapy – RR pts

Bispecific Antibodies

Epcoritamab (NCT06510491) – WM-NET2

Single-arm, multicenter, phase 2 study to evaluate the efficacy and safety of epcoritamab in patients with relapsed or refractory (R/R) WM/LPL (Von Keudell et al. Blood 2024 ASH meeting)


CAR-T cells

MB-106 (third gen CD20-directed CAR-T therapy) Phase 1/2 clinical trial with MB-106 at Fred Hutchinson Cancer Center (Till B et al, Hemasphere. 2024; Shadman et al. 2023 ASH meeting)

CAR-T cells

ZUMA-25 (NCT05537766)

Efficacy of Brexu-cel in rare B-cell malignancies including WM

Phase I/II study CADANCE-101 (BGB-16673-101). Ongoing first-in-human study (FL, MZL, WM). Data presented as oral presentation at latest EHA by A.M. Frustaci

Anti-CXCR4 agents

Ulocuplumab (mAb anti-CXCR4) **Mavorixafor (X4P-001)**

Iopofosine¹³¹ (CLR-131)

CLOVER-WaM study (NCT02952508)

Iopofosine 131 in RR WM pts (at least 2 LOT) (Ailawadh et al. Blood 2024, ASH meeting)

PROTACs

KIN-8194 (dual HCK/BTK PROTAC)

(Yang G et al, Blood 2021)

DFCI-002-06 (dual HCK/BTK PROTAC)

(Liu S et al. Blood 2024 ASH meeting)

Checkpoint inhibitors (Cpi)

Phase II clinical trial evaluating a combination of **Pembrolizumab and Rituximab** RR WM pts (Kothari J et al, BHJ 2024)

Chemoimmunotherapy vs chemo-free approach - Conclusions

- WM is a rare lymphoma usually characterized by an indolent course with deep responses and prolonged survival with chemoimmunotherapy;
- BTK inhibitors have changed treatment paradigm in R/R WM patients, and are now challenging CIT also as primary treatment;
- In the relapsed/refractory setting, the therapeutic panorama is increasingly chemo-free;
- At the moment, trials prospectively comparing BTKis with chemoimmunotherapy head-to-head are lacking;
- Currently, both chemoimmunotherapy and chemo-free approaches (cBTKi) represent valid options; treatment decisions should be individualized based on patient clinical characteristics and disease biology.

Grazie per l'attenzione!

Fondazione IRCCS Policlinico San Matteo Divisione di Ematologia

Prof. Luca Arcaini

Dr. Marzia Varettoni

Dr. Sara Rattotti

Dr. Manuel Gotti

Dr. Roberta Sciarra

Dr. Chiara Cavalloni

Dr. Caterina Zerbi

Dr. Silvia Zibellini

Dr. Chiara Varraso

Dr. Cristina Picone

Dr. Virginia Valeria Ferretti

Dr. Giulia Vittoria Facchetti

Dr. Federico Carpi

Dr. Alessandro Mazzacane

Dr. Gianmarco Favrin

Dr. Martha Cecilia Berliner

Dr. Sofia Pedrali

